Systembio(SBI)

领取MOLI红包
栏目分类
DIME中文网
DIME中文网
你的位置:LEVER 中文站 > DIME中文网 > Systembio(SBI)
Systembio(SBI)
发布日期:2025-01-03 19:04    点击次数:62
一、Systembio(SBI) Exosome-depleted FBS 去外泌体血清(无外泌体血清) 详细信息Do you study bovine exosomes? If not, and you use fetal bovine serum (FBS) in your cell or tissue culture media, you may be isolating more bovine exosomes than you realize. Serum is a rich source of exosomes, FBS included. In order to help scientists study only the exosomes they want, SBI provides Exo-FBS™ exosome-depleted FBS.   Exosome-sized vesicles removed     Very low levels of CD63 positive cow exosomes     Undetectable levels of cow microRNAs     Comparable growth rates as standard FBS     Identical use as standard FBS (add 10% in DMEM or RPMI)        Background Standard growth media for most cells in culture require FBS as a growth supplement to DMEM. FBS is derived from bovine (cow) serum and contains a high abundance of cow exosome vesicles. These exosomes can interfere or cause significant background issues when studying the exosomes secreted from your cells of interest in standard culture conditions.SBI has developed an exosome-depleted FBS growth supplement called Exo-FBS that has been stripped of bovine exosomes. Exo-FBS supports equivalent growth of many types of cells in culture, is devoid of cow CD63-positive exosomes, and does not have any measurable bovine microRNAs. Cell growth in Exo-FBS is comparable to standard FBS. The process of manufacturing of Exo-FBS is a patented method in Patent No.: US 9,005,888 B2. Conclusions Perform your studies of cellular secreted exosomes in culture without the worry of contaminating cow exosomes in your experiments, and with no ultracentrifugation required when you use ExoQuick-TC. Available as standard FBS supplement or heat inactivated FBS media supplement (treated at 65°C for 15 minutes before bovine exosome removal). Exo-FBS Has Greatly Reduced Levels of Bovine Exosomes     Use SBI’s Exo-FBS to ensure your exosome preparations from cell or tissue culture media contain only the exosomes from your cells, not from the FBS in your media. Both ELISA and NanoSight analysis demonstrate the great reduction in bovine exosome levels in Exo-FBS compared to standard FBS. NanoSight Particle Analysis Show Low Exosome Levels in Exo-FBS To demonstrate the depletion of exosomes in our Exo-FBS product, we diluted standard FBS and Exo-FBS samples 1:1000 and then analyzed for particle size and abundance using a NanoSight LM10 instrument. The standard FBS sample shows a significant amount of exosome-sized microvesicles where the Exo-FBS exosome-depleted FBS sample has a drastic reduction in exosome particles. Exo-FBS is Depleted of Bovine CD63 Exosomes      The tetraspanin CD63 protein is a common marker for exosomes. We utilized a bovine-specific anti-CD63 antibody to develop an Enzyme Linked Immunosorbent Assay (ELISA). Equal volumes (50 µl) of either standard FBS or Exo-FBS depleted media supplement were used in this ELISA assay. Amounts of CD63-positive bovine exosomes are dramatically reduced in Exo-FBS compared to standard FBS (graphed results are normalized to the signal level of standard FBS).         Exo-FBS is Cleaner than Ultracentrifuged FBS Quality Control data is generated on every batch of Exo-FBS produced at SBI by comparing NanoSight particle count analyses to the source FBS, FBS ultracentrifuged for 18 hours and SBI's exosome-depleted Exo-FBS products. All samples were diluted 1:100 and NTA data collected in triplicate. Conclusion With Exo-FBS, you can be confident that the exosomes you are isolating are generated by the cells in your culture and not contaminants from your culture medium. Exo-FBS Has Undetectable Levels of Bovine microRNAsNot only does Exo-FBS have greatly reduced levels of exosomes, bovine microRNAs in Exo-FBS are undetectable as shown by highly sensitive qPCR assays. Standard FBS and Exo-FBS media supplements (4 ml) were treated with Trizol extraction methods to recover exosomal RNAs. RNA was converted to cDNA and 72 individual bovine microRNAs were measured by qPCR using SBI's QuantiMir system. Of the 72 microRNAs tested, 12 yielded amplification curves in the FBS sample but not in the Exo-FBS sample. Exo-FBS Is Identical to Standard FBS for Cell GrowthNot only does Exo-FBS enable confident isolation of exosomes free from contaminants present in standard FBS, it supports identical growth rates as standard FBS.  To compare growth rates of cells in Exo-FBS versus standard FBS, we grew HT1080 fibrosarcoma cells, PC-3 prostate cancer cells, MCF-7 breast cancer cells, and HEK293 cells in complete medium with either 10% standard FBS or 10% Exo-FBS supplement. Cells were seeded at either 10,000 or 20,000 cells, and then cultured under standard conditions at 37°C with 5% CO2 for 5 days in the medium indicated. The cells were imaged calculate growth rates and observe cellular morphologies. Equivalent growth and similar cellular morphologies were observed for standard FBS and Exo-FBS media tested across these 4 cell lines. Product CitationsConnor Y, Tekleab S, Nandakumar S, Walls C, Tekleab Y, Husain A, Gadish O, Sabbisetti V, Kaushik S, Sehrawat S, Kulkarni A, Dvorak H, Zetter B, R Edelman E, Sengupta S.  Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nat Commun. 2015 Dec 16;6:8671. Almanza G, Zanetti M.  High-efficiency Generation of Multiple Short Noncoding RNA in B-cells and B-cell-derived Extracellular Vesicles. Mol Ther Nucleic Acids. 2015 Dec 15;4:e271. Sanchez CA, Andahur EI, Valenzuela R, Castellon EA, Fulla JA, Ramos CG, Trivino JC.  Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget. 2015 Dec 9. doi: 10.18632/oncotarget.6540. Holder BS, Jones T, Sancho Shimizu V, Rice TF, Donaldson B, Bouqueau M, Forbes K, Kampmann B.  Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic. 2015 Nov 24. doi: 10.1111/tra.12352. Hiroki Sakakura, Shinji Mii, Sumitaka Hagiwara, Takuya Kato, Noriyuki Yamamoto, Hideharu Hibi, Masahide Takahashi, Yoshiki Murakumo.  CD109 is a component of exosome secreted from cultured cells. Biochemical and Biophysical Research Communications. 2015 doi:10.1016/j.bbrc.2015.12.063. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D.  Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015 Oct 19. doi: 10.1038/nature15376. Philley JV, Kannan A, Qin W, Sauter ER, Ikebe M, Hertweck KL, Troyer DA, Semmes OJ, Dasgupta S.  Complex-I alteration and enhanced mitochondrial fusion are associated with prostate cancer progression. J Cell Physiol. 2015 Nov 4. doi: 10.1002/jcp.25240. Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T.  Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep. 2015 Jun 3;5:10300. doi: 10.1038/srep10300. Khan MB, Lang MJ, Huang MB, Raymond A, Bond VC, Shiramizu B, Powell MD.  Nef exosomes isolated from the plasma of individuals with HIV-associated dementia (HAD) can induce Aβ1-42 secretion in SH-SY5Y neural cells. J Neurovirol. 2015 Sep 25. [Epub ahead of print]. Nakase I, Futaki S.  Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep. 2015 May 26;5:10112. doi: 10.1038/srep10112. Momen-Heravi F, Bala S, Kodys K, Szabo G.  Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep. 2015 May 14;5:9991. doi: 10.1038/srep09991. Peterson MF, Otoc N, Sethi JK, Gupta A, Antes TJ.  Integrated systems for exosome investigation. Methods. 2015 Apr 24. pii: S1046-2023(15)00161-9. Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y.  Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015 Jan 16:1-12. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ.  A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol. 2015;1295:179-209. Jaideep S. and Gossett, Daniel R. and Tse, Henry T. K. and Lamm, Robert J. and Kulkarni, Rajan P. and Carlo, Dino Di.Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics 9, 014112 (2015). Josson S, Gururajan M, Sung SY, Hu P, Shao C, Zhau HE, Liu C, Lichterman J, Duan P, Li Q, Rogatko A, Posadas EM, Haga CL, Chung LW.  Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene. 2014 Jul 28;0. doi: 10.1038/onc.2014.212. Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G.  Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. 2014 Oct 2;10(10):e1004424. Momen-Heravi F, Bala S, Bukong T, Szabo G.  Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine. 2014 Mar 29. pii: S1549-9634(14)00132-4. Basu S, Bhattacharyya SN.  Insulin-like growth factor-1 prevents miR-122 production in neighbouring cells to curtail its intercellular transfer to ensure proliferation of human hepatoma cells. Nucleic Acids Res. 2014;42(11):7170-85. Kaur S, Singh SP, Elkahloun AG, Wu W, Abu-Asab MS, Roberts DD.  CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014 May 30. pii: S0945-053X(14)00092-4. Vargas A, Zhou S, Ethier-Chiasson M, Flipo D, Lafond J, Gilbert C, Barbeau B.  Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014 May 8. [Epub ahead of print]. Deschout H, Raemdonck K, Stremersch S, Maoddi P, Mernier G, Renaud P, Jiguet S, Hendrix A, Bracke M, Van den Broecke R, Roding M, Rudemo M, Demeester J, De Smedt SC, Strubbe F, Neyts K, Braeckmans K.  On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids. Nanoscale. 2014 Jan 16;6(3):1741-7. Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G.Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog. 2013 Dec 17. doi: 10.1002/mc.22124. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M.  Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. Aug 2013, doi: 10.1038/jcbfm.2013.152. Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Gang Zhang Z, Chopp M.  Mir-133b Promotes Neural Plasticity and Functional Recovery after Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats Via Transfer of Exosome-Enriched Extracellular Particles. Stem Cells. 2013 Apr 30. doi: 10.1002/stem.1409. Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y.  Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun. 2013 Jan 11. pii: S0006-291X(13)00051-X. doi: 10.1016/j.bbrc.2013.01.015. Technical ReferencesAdachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N.  Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem. 2010 Jul;56(7):1183-5. De Smaele E, Ferretti E, Gulino A.  MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res. 2010 Jun 18;1338:100-11. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M.  Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10513-8. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009 Nov;55(11):1977-83. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO.  Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654-9. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Wordinger T, Middeldorp JM.  Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA; 2010 Apr 6; 107(14):6328-33. Mathivanan, S. and Simpson, R.J.  ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009.21, 4997-5000. Thery C, Ostrowski M, Segura E.  Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009. 8, 581-93. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I.  Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis; 2010 Jan; 16(1):34-8. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A, Ohkuchi A, Matsubara S, Takeshita T, Takizawa T.  Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod; 2009 Oct; 81(4):717-29. Taylor DD, Gercel-Taylor C.  MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol; 2008 Jul; 110(1):13-21. Simpson RJ, Lim JW, Moritz RL, Mathivanan S.  Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009 Jun;6(3):267-83. Review. 二、SBI Exosome-depleted FBS 去外泌体血清细胞培养用血清保存方法与解冻常见问题: 1、保存血清推荐的方法?我们建议血清应保存在-5 ℃至-20 ℃。然而,若存放于4℃时,请勿超过一个月。若您一次无法用完一瓶,建议您无菌分装血清至恰当的灭菌容器内,再放回冷冻。 2、如何解冻血清才不会使产品质量受损?我们建议您将血清从冷冻箱取出后,先置于2~8 ℃冰箱使之融解,然后在室温下使之全融。但必须注意的是,融解过程中必须规则地摇晃均匀。 3、血清解冻后发现有絮状沉淀物出现,该如何处理?血清中沉淀物的出现有许多种原因,但最普遍的原因是由于血清中脂蛋白的变性所造成,而血纤维蛋白(形成凝血的蛋白之一)在血清解冻后,也会存在于血清中,亦是造成沉淀物的主要原因之一。但这些絮状沉淀物,并不影响血清本身的质量。 若您欲去除这些絮状沉淀物,可以将血清分装至无菌离心管内,以400 g 稍微离心,上清液即可接着加入培养基内一起过滤。我们不建议您以过滤的方法去除这些絮状沉淀物,因为它可能会阻塞您的过滤膜。 4、为什么要热灭活血清?加热可以灭活补体系统。激活的补体参与溶解细胞事件,刺激平滑肌收缩,细胞和血小板释放组胺,激活淋巴细胞和巨噬细胞。在免疫学 研究,培养ES 细胞,昆虫细胞和平滑肌细胞时,推荐使用热灭活血清。 5、有必要做热灭活吗?实验显示,经过正确处理的热灭活血清,对大多数的细胞而言是不需要的。经此处理过的血清对细胞的生长只有微小的促进,或完全没有任何作用,甚至通常因为高温处理影响了血清的质量,而造成细胞生长速率的降低。而经过热处理的血清,沉淀物的形成会显著的增多,这些沉淀物在倒置显微镜下观察,像是“小黑点”,常常会让研究者误以为是血清遭受污染,而把血清放在37℃环境中,又会使此沉淀物更增多,使研究者误认为是微生物的分裂扩增。因此我们建议您,若非必须,您可以不需要做热处理这一步。如此一来,不但节省您宝贵的时间,更确保血清的质量! 6、为什么储存在冰箱中的胎牛血清会出现沉淀?赛乐的胎牛血清没有预老化,储存在2-8 ℃时,血清中的各种蛋白和脂蛋白(如冷凝集素、纤维蛋白原、玻粘连蛋白等)可能聚集而形成沉淀或可见的混浊。这应该不会影响血清的质量。推荐在-20 ℃储存胎牛血清,避免反复冻融。 7、如何避免沉淀物的产生? 我们建议您在使用血清的时候,注意下列的操作: 解冻血清时请按照所建议的逐步解冻法(-20 ℃至4 ℃至室温),若血清解冻时改变的温度太大(如-20 ℃至37 ℃), 实验显示非常容易产生沉淀物。解冻血清时请随时将之摇晃均匀,使温度及成分均一,减少沉淀的发生。三、优势促销:然其生物常备货产品: 品名 品牌 货号 规格 货期 价格 北美特级胎牛血清 Gibco 16000-044 500ml 现货 询价 澳洲胎牛血清 Gibco 10099-141 500ml 现货 询价 南美胎牛血清 Gibco 10270-106 500ml 现货 询价 加拿大血清 Hyclone 30396.03 500ml 现货 询价 sbi无外泌体血清 SBI EXO-FBS-50A-1 50ml 现货 询价 日本同仁CCK-8 dojindo CK04 500t 现货 询价 RPMI 1640培养基 Invitrogen 31800022 500ml 现货 询价 DMEM(高糖) 培养基 Invitrogen C11995500BT 500ml 现货 询价 DMEM/F-12培养基 Invitrogen C11330500BT 500ml 现货 询价 PBS缓冲液 Invitrogen C10010500BT 500ml 现货 询价 二甲基亚砜,DMSO Sigma D2650 100ml 现货 询价 胶原酶 I Invitrogen 17100017 1g 现货 询价 胰酶0.25% EDTA Invitrogen 25200056 100ml 现货 询价 胰酶0.25% EDTA Invitrogen 25200056 500ml 现货 询价 肝素(钠) Sigma H3393-FZ 50ku 现货 询价 支原体PCR检测试剂盒 R&Q Bio Myco-P-20 20次反应 现货 询价 支原体清除试剂盒 R&Q Bio Myco-E-1 0.5 ml 现货 询价 Hanks平衡盐溶液 Invitrogen 14170161 500ml 现货 询价 青霉素-链霉素溶液 Invitrogen 15140122 100ml 现货 询价 潮霉素B Sigma H7772 100mg 现货 询价